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Non-linear oscillations, described by the standard Bogolyubov system, are investigated by the averaging method. The situation, 
often encountered in applied problems, when the system of the first approximation does not enable one to judge its essential 
evolution and qualitative behaviour (the averaged value of the right-hand side of the system is identically equal to zero), is 
considered. An averaging scheme for describing the evolution over substantially larger time intervals in negative powers of a 
small parameter (quadratic, cubic, etc.) is proposed and justified. Examples are given which illustrate the effectiveness of the 
proposed higher-order averaging schemes. 0 2002 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

Consider a multidimensional non-linear oscillatory system in the standard Bogolyubov form [l-4] 

x = &X(f, x), PO, x(0)=x0, Os&G&,~l (1.1) 

Here x is is an n-vector, x E D C R”, D is a connected set (usually a closed region [l-3] or an open 
region [4]), and X is a fairly smooth function of the real variable x, the smoothness properties of which 
will be refined below. Continuity and 2n-periodicity is assumed with respect to the argument t (where 
t is the time or a rotating phase). 

To investigate the Cauchy problem (l.l), standard constructions of the averaging method are carried 
out [l-4]. As usual, an averaged system of the first approximation is written 

6 = E&&j, ((0, = x0, X0@) = (x(L 5)) 
(1.2) 

~=~O(Et,Xo)ED, OGtG!, / E, L = const 

The angle brackets in (1.2) and henceforth denote averaging over a period of 2~ with respect to the 
explicitly occurring argument r. Then, depending on the nature of the solution of the first 
approximation 5 (1.2) and the local properties of system (1.2) in the neighbourhood of this solution, 
the results of the main Bogolyubov theorems regarding the neighbourhood of the solutions (the 
E-neighbourhood in the case of periodic@ with respect to r) are used in an asymptotically large time 
interval 0 6 r s L/E (the first theorem, and the averaging method [l-6]) or in an unlimited interval 
(the second theorem and the method of local integral manifolds [l-3]). 

If X0(c) = 0, the solution 5 = &, (1.2), generally speaking, gives a fairly complete representation of 
the evolution of the osculating variables x and of the oscillatory process as a whole. Subsequent 
approximations reduce solely to a small O(E) refinement of the solution in the interval 0 G r s L/E, 
which is of no particular importance for investigating the qualitative behaviour of a system both in its 
theoretical and practical aspects. 

We will consider the situation when it is essential to take higher approximations into account. 
In applied problems we often have the identity X0(c) = 0; then co =x0 and in the interval r - l/& the 
variable x performs small vibrations with an amplitude O(E) about x = x0, and in this case evolution 
with a velocity O(E~) is possible. We propose another approach, involving the construction of higher- 
order averaging schemes with respect to E and a considerable increase in the range of change of the 
argument r. To do this we use a standard transformation of the variable x + 5, used as a basis for the 
averaging method or the change of variables [l-6] 
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By differentiating expressions (1.3), taking into account the identity for u, we obtain relations of the 
form 

5 = &%(:(t. 5. E), 5(O) = x0 (au / a2 = X(t, 5)) (I-4) 

The right-hand side of system (1.4) i.e. the function E, for fairly small values of E > 0 will be continuous 
with respect to k,c E D, and 2n-periodic with respect to f; the following approximate representation 
holds for ,” 

~=Bo,(r,~)+~*(t,~)+&*...a2~0)+~ 
(l-5) 

zo, = x$4, q +x;,u,u)-u;x;u 

For the Cauchy problem (1.4), (1.5) a range of the argument 0 d t s L/E* is considered, in which the 
variable 5 may change considerable - by an amount of the order of unity. Then the initial variable 
x changes by the same amount. It is required to construct a higher-order scheme in powers of E and to 
substantiate the estimate of closeness. Note that the main purpose of this asymptotic approach, like 
the classical Krylov-Bogolyubov method [l], is to avoid singular terms in the approximate construction 
of the solution in the range of variation of the argument 0 < t < L/E* considered.,The need to develop 
such an approach in its computational aspect is also important, since numerical integration of Cauchy 
problems (l.l), (1.4) when t - l/&* is even more problematic than when t - ~/IT. 

2. AVERAGING OVER AN EXTENDED INTERVAL 

We will apply to the Cauchy problem (1.4) (1.5) the standard scheme change of variables 5 + TJ of the 

type (1.3) 

5=rl+E*v(t,rl,&)=rl+E*y +E3U3+E4... 

u = b (E(s, q, E) - (E))ds, q E D 

(2.1) 

ij = &*2,(q)+ &*2,,(q) + E~H(~, ‘tj. E), q(o) = x0 

5, = (Eto,(t, q)), 8,, = (z,(t, TJ)), . , ., O+SL/E* 

Here H is a known 2n-periodic function oft, fairly smooth and uniformly bounded with respect to 
n, r\ E D, for sufficiently small values of E > 0; its definition is similar to (1.4) for E. Suppose Z. = 0; 
then it is natural to introduce an interval of the argument 0 4 t 6 L/E* in which the variable TJ, and 
together with it also the variables 5 and x, vary by a considerable amount of the order of unity. We will 
neglect terms O(s3) and higher on the right-hand side of system (2.1). We obtain an autonomous system 
of the “first approximation”, the solution of which is assumed to be constructed (analytically or 
numerically) 

Jjo = &*9&J). q,(O) = x0, ql-J = qo(E2’. x0) 
(2.2) 

OSE2f cf., x0 = (Xiu) 

The function E. in (2.1) and (2.2) is defined by (1.5); the quantities X(t, c), u(t, E,) are taken with 
5 = q = Q. An estimate of the uniform closeness of the solutions of problems (2.1) and (2.2) is made 
using integral inequalities (Gronwall’s lemma [l-4]). In fact, the standard procedure for constructing 
estimates of the averaging method leads to the uniform limit 
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max, I IJ -q. ISCq~, O~rsLl E*; C,,, L - const 

(2.3) 

Cn = ML exp( hL), M=max,,nl&,+EHl, LED, Os&=sq, 

Here h is the Lipschitz constant with respect to n of the function E&l). 
It is assumed [l-3], that rlo E D together with a certain small neighbourhood in the range of variation 

of r considered, according to (2.3). It follows directly from (2.3), taking (2.1) and (1.3) into account, 
that the solution q. of (2.2) is c-close to the solutions 5,~ of problems (1.4) and (1.1) respectively 

max, 15 - ?jo ISCS~, max, I x -q. ISC,E, 0 S t =G ,!I&* 

(2.4) 
(C, - const) 

Hence, when X0 w 0, Ea = 0 the solution of the first approximation no (2.2) defines, in the interval 
t - YE*, the evolution of system (1.1) with a small error O(E) (see (2.4)). The procedure for refining the 
solution TJ of problem (2.1) in powers of E can be realized similarly, as is the case in the averaging method 
[l-6]. The required degree of accuracy is limited by the smoothness of the function E, i.e. the initial 
right-hand side X of (1.1). In particular, if the function ZtoJ satisfies the Lipschitz condition with 
respect to 5,c E D, with a uniformly bounded constant h, while the function A.Z is uniformly bounded 
in the region 0 G E 4 ~g, q E D, t 3 0, then, for the solution of the first approximation ~0 (2.2) we have 
estimates of the c-closeness of (2.3) and (2.4). The function Z:(oj will be such, if the initial function 
X is continuously differentiable with respect to x, x E D, while the derivatives satisfy the Lipschitz 
condition. Naturally, a scheme of higher order in powers of E than the standard averaging scheme 
requires greater smoothness. It is essentially connected with the construction of the second 
approximation (see Section 3). 

If the function E(i) = EC0 + 
k 

&Ei (1.5) satisfies the Lipschitz condition with respect to E, i.e. the second 
derivatives of the function satisfy this condition with respect x, x E D, then, by the change of variables 
(2.1) we can write the system of equations of the “second approximation”, which leads to an error O(E*) 

in the extended range of variation of the argument considered. The refined Cauchy problem has the 
form 

(2.5) . , 
Tj(,, = ?Jo(E2f, x”)+ETJ,(&*t, x”)+E2 . . . . oS&*tSL 

The function ql in (2.5) is found using numerical or analytical methods based on the generating 
solution rlo (2.2) and the variational system [2]. Here it is more convenient to introduce the slow argument 
r= I?& 0 G ‘5 < L. Without loss of accuracy in powers of E we can substitute rlo(z, xe) to the function 
Z:(oj. Using the solution -q~i)(z, x0, E) (2.5) obtained, we have the limits 

(2.6) 

max, I X-blclj +EU(L Ilo)] 1 C CxE2, OSlG LIE2 

The construction of more accurate solutions q&, x0, E), k a 3, which differ from q by O($) for 
0 6 t 6 L/E*, requires greater smoothness of the functions X and extremely complex expansions, taking 
the expression for H(t, 17, E) (2.1) into account (see below). It is usually of little interest: corrections 
do not make any appreciable contribution to the evolution of the system in the interval 0 < t G L/E*. 
We have the following assertion. 

Theorem 1. When the condition X0(x) = 0 (1.2) is satisfied as well as the conditions for smoothness 
with respect to x and periodicity with respect to t of the function X(t, x) formulated above, the solution 
x(t, x0, E) of system (1.1) is described in the interval 0 s t < L/E~ by the functions qo(~~t, x0) (2.2) with 
an error O(E), according to (2.4) and the function rki) + ~c(t, Q) (2.5) with an error O(E*), according 
to (2.6). When E. f 0, in general, the variable x varies by an amount 6c of the order of unity with respect 
to the small parameter E: 16.x 1 = Ix -x0 1 - O(l), t - YE*. 

The proof of Theorem 1 was in fact carried out in the preceding constructions and has a constructive 
form. Note that the function X and the quantity x0 may depend continuously on the small parameter 
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E. This assumes that expansions in powers of E are carried out [l-3] ( see the examples in Sections 4.2 
and 4.3). In particular, when X = X(t, x, E), x(O) = X’(E), we must put in (1.2)-( 1.4) 

x&J f (X(t, 5, ON, QO, E) = x0(O), u = j xts, g,obis (2.7) 
0 

The last expressions in (1.4) and (1.5) and others require that the functionsXE,XL2, . . . be taken into 
account and refinement of the quantities c(O, E), i.e. x’(O), x”l’(0), . . . must be taken into account. 
Of course, if the dependence of the functions X and x0 on E is not smooth (for example, continuous), 
these expansions are impossible and the dependence is taken into account completely. 

3. HIGHER-ORDER PROCEDURES 
OF THE AVERAGING METHOD 

Together with the first-order identityXo(c) = 0, a second-order identity Eo(@ = 0 may also occur, i.e. 

E&-l) = (Xi tt, rt)j X(s, l-l@) q 0 (3.1) 
0 

The variable q, in the first approximation, then does not vary in the interval I - l/~~, and by (2.2) we 
obtain q. = x0. As a result ] rl -x0] = O(E) (see (2.3)). The variables x and TJ also vary by an amount 
O(E) when t - l/~~. By analogy with the above, we establish that the evolution of the slow variable q is 
determined by the quantity O(E~) (see (2.1) and (1.5)) 

rj = a3Z,e(n) + a4H(t, n, E), q(O) = x0 

(3.2) 

The procedure of the method of separation of motions is applicable to system (3.2) if the right-hand 
side is sufficiently smooth with respect to n, and this leads to a “first approximation” system and to the 
limits 

Hence, when X0 = E. = 0, a considerable change in the variable x occurs in the interval r - U&3 if 
El0 + 0. The first approximation (with an error O(E)) is determined by the function 50 (3.3). A more 
accurate calculation requires, as usual, making use of the standard scheme of the averaging method 
based on explicit expressions for the functions Era(r) and H(t, r~, E). We can similarly construct a system 
of equations of the evolution of the slow variables of any power of E. Note that the proposed procedure 
of successive changes of variables was used in [5] 

Higher-order schemes can be realized in another way starting from the standard procedure of the 
averaging method, namely, by changing the variables for the initial system (1.1) described previously 

P-31 

x=~+&v(r,t$&)=t,+&vl +E2v2+...+Ekvk+&‘+‘,.. 

Vi = V,fr, Q, Vito, 5) = 0 

6 = &O(C, E) = &CD, +&*0, +&%, +...+Ek@k +Ek+'... 

5<0> = fl, 0; = O,{@ 

(3.4) 

The coefficients Uj of the asymptotic expansion (3.4) and the corresponding expressions for Oi are 
calculated in the required number in terms of the derivatives of the function X at the point x = 5, by 
quadratures and algebraic operations. If we confine ourselves to a k-th order expansion, the variable 
5 will be described by the equation 
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5 = E@,,,(& E) + Ek+‘@;+, (t, 5, E), t(o) = x0 
(3.5) 

Suppose @i(c) f 0; then the system of the first approximation, which defines the evolution of the vector 
x, is described by relations (3.4) and (3.5) when k = 1 

X = 5 + ELI, (L c), 5 = E@, (5) + E2@;(t, 5, E), t(o) = x0 

u, = b lX(s. 5) - 0, (S)l& 
(3.6) 

0, = (x0,&+0 

Discarding ~~0; and solving the Cauchy problem, we obtain a solution of the first approximation 
ci(~f, x). Expansions of the type (3.4), (3.5) lead to a refinement of the initial solution x by an amount 
O(E) when t - YE. 

Suppose now that O,(c) = O,@,(k) f 0. Then, it is natural to take expressions (3.4) and (3.5) as the 
system of the first approximation when k = 2 (see Section 2) 

x = (+M,(r, @+E2U2(r, Q, (I, = j X(s, ()ds 

5=E202(5)+E20;(r,5,E), ?Qo,=:a 

0, = (X: 0,&U, 0, 6% I/, = j [X:0, Qv, (s, 5) - O2 MS 
0 

(3.7) 

We will take the function &,i as the solution of the first approximation of system (3.7). This function 
is defined by the relations (see (2.2)) 

5, = E202(5, ), t,(O)= x0, 5, = c,(E2r, x0), 0 s r s LItz2 
(3.8) 

16-6, lsCgE. 1x-6, 1cCxE 

If higher powers of E are taken into account in relations (3.4) and (3.5), this leads to small O(E) 
corrections to the initial solution x (see (3.2) and (3.3)). 

The system of the first approximation of an arbitrary k-th power in E can be written down 
similarly 

x=t,+EU, +...+&‘U,, 0, =02=...=O&_, =o, O&f0 

i, =E’@&). 5,(0)=x0, 5, =c,(Ekt,xO) 

15-5, 1Cc,E, 1x-& 1sC,E, OstsL/E”: 

(3.9) 

Refinement of the initial solution x requires the construction and integration of an averaged system 
for 5 of higher order than the k-th approximation. As already pointed out, these calculations can 
be carried out fairly simply using the perturbation method. It is then more convenient to introduce the 
slow argument rk = Ekt, 0 < rk c L. 

Theorem 2. Suppose, when using the averaging method in the k-th approximation with respect to E, 
the identities 0, = 02 = . . . @k_l = 0 are satisfied, but @k(c) + 0, k 2 1 can have any value. Then, the 
qualitative evolution of system (1.1) occurs in the interval 0 
&(rk, x0) (3.9) with an error O(E). 

s r s Lhk and is described by the function 

The closeness ofx and gi when 0 s t c L/E~ is proved using integral inequalities (Gronwall’s lemma 

WI)* 
Note that in addition to using the standard procedure of the averaging method [l-6], one can use a 

Newton-type recurrent accelerated convergence method to construct the averaged system. At the first 
stage of the iteration procedure we assume, according to transformation (1.3) 
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x =x(I) + EQ(G X(,)), CJ, = j X(3, X(,))dS, (X) = 0 
0 

X(I) = E2X(,)(‘? X(l). E) (3.10) 

X(,, =E-‘(~+EU;,)-‘[X(t,x(,)+EI/,)-X(t,X~,))l 

If the average (XciJ) = O(E*) or smaller in powers of E, the following iteration step is carried out 

I 

X(I) = 52) +&*&o, X(2)7 El> u* = j X(,)(S x(*)7 w 

0 

X(2) = E4X(*)(‘> X(2)7 EL 
E4 = E(2*) (3.11) 

X,,, = c-2(/ +s2’!-&)-‘[X&, xc2) +E*u,. E) - &,(f. x(2). E)] 

Similarly, if the average Uy,,,) = O(E~) or smaller in powers of E, we obtain in a similar way the averaged 
system of the third approximation .$3j = O(s’). At the k-th step we have the system (provided 
(X(H)) = O(E ‘@-*)) or less) 

x(k) - - Ee(k’X(k,(‘, xck), E), 8(k) = 2k (3.12) 

The evolution of the variablex is determined from system (3.12) if the average (X(,$ = O(8), where 
0 6 K G B(k) - 1. The evolution equations of the first approximation are reduced to the form 

I 
3.9). A 

considerable change in the variable x occurs in the range of the argument 0 G z G LEE, z = E’ % 

4. EXAMPLES 

We will consider non-linear oscillatory systems, an investigation of the essential evolution of which 
requires the use of an averaging scheme of the second order in E (see Sections 2 and 3). 

4.1.A model exumple. As an illustration we will take the scalar equation, which also allows of analytical 
integration, 

(4.1) 

By expanding relation (4.1) betweenx and t, E in powers of E or using the standard averaging procedure 
[l-6], we obtain the required solution of the Cauchy problem - an expression for x in the second 
approximation in s 

x = &, ,(T, ti) + &(cos xe - cos (x0 + t)) +o( E*) = 9 + O(E) (4.2) 

OstsL./& 

We apply the averaging scheme of the second order to Cauchy problem (4.1) (see Section 2 and 3); 
we obtain the required solution in the first and second approximations 

~=~~,,(2,x~)+E[CO~~~-cos(t+~~,,)]+~(E~)=~~,~(2,x~)+~(&), Ott =S L/E* (4.3) 

Comparison of expressions (4.3) and (4.2) indicates that the first term of the expansion determines 
the solution of the second order with an error O(E) in the interval c - 1/s2. After a time 0 6 t =S L/E’ a 
considerable evolution 6c of the variable x occurs (by an amount 6x = -L/2), which is not obvious from 
(4.1) and (4.2). The fact that a term O(E~) occurs in (4.2) in the interval I - YE by nopeans guarantees, 
that it will be the case for the interval t - 1/tz2 (for example, when O(E~) = O(E (sf) ). 
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4.2. Quasi-linear oscillations of a mechanical system. Consider the forced oscillations of a non-linear 
oscillator of the form 

;i + Q(q) = P(t) - A& q(0) = q”, i(O) = 4’ (4.4) 

Here Q is a non-linear restoring force in the neighbourhood of the equilibrium position q = q’ (q’ = 
0), P is a two-frequency periodic force, and A is the coefficient of viscous friction. Suppose Q’(0) = ca2 
> 0 and let us assume that the frequencies v1,2 of the external force are commensurable with o, i.e. a 
resonance situation occurs. Then, assuming the quantities q”, go, A and the amplitude 1 P 1 to be small, 
which we will characterize by the parameter E, we can reduce Eq. (4.4) to the form (after cancelling E) 

j; + o*y = wt. y, j, E), y(0) = a, jJ(0) =u 

F=hsinv,t+ay2+&(fsin(v2f+cp)+py3-hj)+E2p4+E3..., 

q = Ey, P=E*(hsinv,f+Efsin(v,r+cp)), OCEGI 

a=-;Q”(O), P=-;e”(O), y=-&Q”(O), h=~*h>O 

(4.5) 

We will further assume that v1 = 20, v2 = o, while the remaining parameters are arbitrary quantities 
of the order of unity. We will introduce the dimensionless time (wt + t) and appropriately redenote 
the parameters. Then, changing to the Van der Pol osculating variable x = (xi, x,)‘, we obtain a 
system of equations of the type (1.1) in the standard Bogolyubov form [l-3] 

X = cU(f, x, E), X, = -Fsin r, X2 = Fcost 

x, (0) = 0, x*(O) = u (4.6) 
y = x, cost + x2 sin t, j = -x, sin r + x2 cost 

Note that the function X depends on E, i.e., it is necessary to take expression (2.7) into account. It 
follows from (4.5) and (4.6) that X(0,(x) = (X(t, x, 0)), i.e. the situation described in Section 1 arises. 
The slow variable x may undergo considerable evolution 6x - O( 1) in the interval t - l/~~. A system of 
a higher, second-order type (1.4) is constructed by making change of variables (1.3) in which 

u, = -p1 -c’)+~~,~,s~+~;(~-~c+c”)]-;~~, C~cost 

u2 =~[S:(3s-s3)+25,52(1-c9)+~~~3]+~~(l-c3). smsint 

(4.7) 

In addition to the termX!&, 5, O)u(t, E_) the vectorX’,(t, 5, 0) also occurs in the expression for &, due 
to the correction O(E) in the function F (4.5). Dropping quantities O(E~) in the equation for 5, we obtain 
a system of the second order in E 

5 = E*(x:(L 5,O)u(L 5>+ x,‘ct, 5, O)), ((0) = x0 (4.8) 

The next stage of investigating system (4.6) involves the averaging of the right-hand sides of Eqs (4.8) 
overt (see (2.1)). In the first approximation, we obtain for the averaged variable rl 

ij=E*(((x;))u+((x~))), ?j(O)=x”, 0StSL/E2 (4.9 

((XL )4 = -32TJ2TJ2 ++hq, 

((x;e)> = -+oscp-33$q2 -+I, 

((X;,)4=$a*~*q -+t12 
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The expressions in parentheses of the type (X) denote that the function X is taken with x = rl and 
E = 0. System (4.9) possesses obvious structural properties; it can be effectively investigated by qualitative 
phase-plane methods. In particular, when there is no external force (h = f = 0) Eqs (4.9) can be 
integrated in terms of elementary functions 

q2 = xo2 exp(-At), q2 = qf + r+f, xo2 = a2 +u ’ (4.10) 

Expression (4.10) represents a decrease in the total energy of system (4.5) with time, due to linear 
dissipation. After substituting r12 from (4.10) into (4.9) we obtain an elementary integrable system 

(4.11) 

11, =(acosv-u sinW)exp 1 2 

( 1 
-:a ht 

q2 = (asin w +IJ cos y)exp 1 2 

( 1 
-2E At 

According to relations (4.11), the motion of a passive system in the time interval t - 1/tz2 reduces to 
slow rotation of the vector of the initial state with an exponentially decreasing angular velocity and a 
slow exponential decay. There is a stationary point of the stable node type in the system (in the linear 
approximation). It is interesting to note that the non-linear perturbations 0(sy2) and O(E$~) in (4.5) 
in the interval t - 1Pz2 lead to actions O(~~q~rli 2) of the same structure (see (4.9) and (4.11)). They 
have a conservative character, where the first ‘is independent of the sign of a while the second is 
determined by the quantity p, which may lead to their mutual compensation. The harmonic force Eh 
sin 2t (4.5), for sufficiently large 10% 1 leads to unstable saddle-type stationary points (in particular when 
f = 0). When h = 0 we obtain an oscillatory system, which is extremely interesting from the mechanical 
point of view, similar to a Duffing oscillator, which has been investigated in some detail in the literature, 
including other resonance relations [7-lo]. Hence, the approach described confirms that in the interval 
l/s2 interesting evolutionary processes occur in system (4.5), which are not found in standard 
investigations in the interval r - l/&. 

4.3. Perturbed parametric oscillations of the second order. Consider the motion of a plane physical 
pendulum, whose axis undergoes single-frequency oscillations, taking into account the moment of the 
viscous forces. Unlike the case of rapid vibrations [l-3] we will assume that the frequency of small 
oscillations is comparable with the excitation frequency. The amplitude of the oscillations of the 
suspension point and the moment of the viscous-friction forces will be assumed to be relatively small 
quantities. We have the equation of motion 

J@+ Mglsin(p = -Mf(~,(vt)coscp+jo(vt)sincp)-A+ (4.12) 

Here cp is the angular deflection of the axis of the pendulum from the vertical, J is the moment of 
inertia, M is the mass, 1 is the distance between the suspension point and the centre of mass along the 
axis of the pendulum, (x0, yo) are the coordinates of the suspension point, A is the coefficient of the 
moment of the viscous-friction forces, and v is the excitation frequency. To fix our ideas we will assume 
that the point moves along an ellipse in the plane of oscillations of the pendulum 

x0 = d sin (2~ + s), y. = h cos 2vt; d, h, v, 6, A = const (4.13) 

Further, using expression (4.13) we will introduce the dimensionless argument 8 and parameters 
N2, x, E, h; we obtain, instead of (4.12), the equation 

@‘+(N2 -Ecos20)sincp=Xsin(28+6)coscp-ho’ (4.14) 

8 = vt, N2 = Mgf(Jv2)-‘, x = 4MldJ-’ 

E = 4MlhJ-‘ , h = A(Jv)-’ 
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Here the prime denotes a differentiation with respect to the argument 8. We will take the quantity 
E as the small parameter; we will also assume x and h, to be small while the quantities N and 6, generally 
speaking, are arbitrary. 

Consider the case of resonant quasi-linear oscillations of system (4.14) which lead to a second-order 
averaging scheme. The corresponding assumptions and equation have the form 

Here y, y, x, cr are quantities of the order of unity. 
An essential difference between Eqs (4.15) and (4.5) is parametric excitation, which is of the order 

of E. Further constructions are carried out in the same way as in Section 4.2. The change to osculating 
variables x1 and x2 is carried out using formulae of the type (4.6). It was established that the averages 
of the functions Xi and X2 with respect to 0 when E = 0 are identically equal to zero, while the functions 
u1 and u2 and the averaged system of the second order have the form 

51 5 u, =-12(1-~~~320)-J$sin32CI 

51 t2 u2 =E(3sin2f3-sin320)+--(l-cos320) 

5; &((_&+y)5, -;cos6-3252 -+,)* 5*(0)=4 

,t; =c2((.&-y)c, +tsin6+$t25, -t&)9 
52(0)=4 

(4.16) 

The solution of autonomous system (4.16) c1 2(~28, xy, ~02) defines the variables x1 2 and y, y’ with an 
error O(E) in the range 0 G 8 G Lb2. It can be investigated fairly completely by phase-plane methods. 
Note that the terms z&2 and i5*5i,2 have a conservative form, i.e., they occur in the equation for 
the total energy. The terms -c&,2/2 lead to an energy that decreases exponentially to zero, but terms 
of the same sign (the parametric action) and terms containing the parametersx and 6 (external resonance 
action), will hinder this dissipation. 

To be specific, we will consider the situation when there are no horizontal oscillations of the suspension 
point (x = 0). The system then has a stationary point t1 = c2 = 0; we will investigate its stability in the 
sense of the averaged equations. The characteristic exponents are 

PI,2 = -+l, M=[(&+Y)(&-Y)]% (4.17) 

It can be seen that the expression p(y) (4.17) vanishes when y1 = -l/192 and y2 = 5/192. Outside the 
range y < yl, y > ?I;! the expression for p is imaginary, and consequently this stationary point is 
asymptotically stable (o > 0, a stable focus), while the s-closeness between c1 2 and~~,~ will exist for all 
8 L 0 [l-3]. Inside the range of the function u 2 0, a maximum is reached: i* = 164 and y* = l/96. If 
the dimensionless dissipation factor o in (4.17) is sufficiently large (o > l/32), thenp1,2 < 0, and we 
will have a stable mode and the stated conclusions on closeness. If 0 < o < l/32, a set of values of y 
exists, where the necessary and sufficient conditions for asymptotic stability hold (a node or a focus). 
There is a range of values y’ < y < y” on the y axis, to which an exponentially unstable point (a saddle) 
corresponds; the boundary points y = y’, y” correspond to the critical case of a single zero root 
@, = 0); the other root is negative (p2 < 0). Hence, the extension of the scheme of the investigations 
to the interval 8 - l/c2 enables us to investigate, as in the example in Section 4.2, extremely interesting 
features of the evolution of the oscillations of a pendulum with a slowly oscillating suspension point in 
the s*-neighbourhood of the (2:2) resonance regime considered. 
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